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Abstract. A random mixture of bifunctional and tetrafunctional units is placed on a simple 
cubic lattice. Permanent bonds between these units are then formed by the random motion 
of active centres (radicals) resulting in a model for the gelation of polyacrylamide and 
similar processes. The largest of the clusters formed by this kinetic percolation process 
is identified with the gel fraction, the ‘mean cluster size’ with the weight-average degree 
of polymerisation. The critical exponent y of the mean cluster size is roughly the same 
as for random percolation, that is, different from that of the ‘classical’ theory of Flory and 
Stockmayer, but the corresponding amplitude ratio, that is, the ratio of average molecular 
weight on both sides of the gel point, differs strongly from its value in random percolation. 
Thus, this kinetic gelation model seems to belong to a universality class of its own, different 
from both that of random percolation and that of classical gelation theories. 

1. Introduction 

The phase transition (gelation) from the sol to the gel for branching molecules was 
investigated several decades ago by Flory (1941, 1953) and by Stockmayer (1943) by 
what became later (Fisher and Essam 1961, Frisch and Hammersley 1963) known as 
percolation theory on a Bethe lattice. In contrast to other phase transitions like Curie 
points, little attention has been paid until quite recently (de Gennes 1976, Stauffer 
1976) to critical phenomena in this polymerisation process. As a recent review 
indicates (Stauffer et af 19821, it is at present unclear, both theoretically and experi- 
mentally, to which ‘universality class’ gelation belongs. This means we do not yet 
know reliably if the critical exponents of the sol-gel transition have the ‘classical’ 
values obtained from the Flory-Stockmayer theory and similar methods (Stauffer et 
a1 1982), if they agree with the exponents of random three-dimensional percolation 
theoryv (de Gennes 1976, Stauffer 1976, Stauffer eta1 19821, or if they differ from both. 

An important drawback of many theories, in particular of both random percolation 
theory on a three-dimensional lattice and of the original Flory-Stockmayer theory, 
is their assumption that chemical bonds are formed randomly. In reality, for irrevers- 
ible gelation the bonds are formed as a result of a kinetic process which contains both 
deterministic and random elements. There is no a priori reason to believe that the 
results of this growth process are the same, or at least belong to the same universality 

P Present address: Service de Physique Thtorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France, 
11 Present and permanent address: Institut fur Theoretische Physik, Universitat zu Koln, 5000 Koln 41, 
West Germany. 

We use the expression ‘random percolation’ for what is often simply called percolation to underline that 
the bonds are not created according to a thermal equilibrium distribution (Coniglio et al 1982). 
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class, as random percolation on a Cayley tree (Flory-Stockmayer theory) or on a 
simple cubic lattice (random percolation theory). 

The aim of the present paper is to shed more light on the question of how a kinetic 
gelation process differs from random theories. For this purpose we perform computer 
simulations of a lattice model for gelation that to our knowledge is the most realistic 
model investigated so far. It is a generalisation of an earlier study of Manneville and 
de Seze (1981). In the language of Billmeyer (1962), our model describes an addition 
polymerisation and not a condensation and was motivated by radical-initiated gelation 
studies, for example of polyacrylamide. It consists of bifunctional units (corresponding 
in this analogy to monoacrylamide), tetrafunctional units (corresponding to bisacry- 
lamide) and active centres (‘radicals’, ‘initiators’, corresponding to ammonium persul- 
phate) which trigger the polymerisation of the acrylamide. All these units are put 
into a chemically inert solvent where they can move. 

The next section describes this model in greater detail. Section 3 gives the methods, 
and § 4 the results of our computer simulation. The discussion compares our results 
with those of other kinetic percolation theories. A short account of our work was 
given earlier (Herrmann et a1 1982); the effects of the solvent with mobility are 
investigated separately by Bansil et a1 (1982); therefore, the present results refer 
mostly to fixed molecules without a solvent. 

2. The model 

To clarify our radical addition polymerisation model we will first present the example 
of polyacrylamide gelation (Bansil er a1 1982, Tanaka 1981). Monoacrylamide (figure 
l(a)) and bisacrylamide (figure l (6) )  are put into an inert solvent. Monoacrylamide 
has one and bisacrylamide two outer carbon double bonds which can be opened. As 
each opened double bond gives two new bonds the monoacrylamide is bifunctional 
and the bisacrylamide tetrafunctional. In our computer model we also denote these 
molecules as ‘units’. An initiator I2 (e.g. ammonium persulphate: (NH&(SO.&) is 
included in the sol which dissociates into two radicals: IZ+21* (e.g. two NH4S04* 
radicals). Each radical can saturate by breaking up a carbon double bond but leaving 
the other bond unsaturated (figure (2a)). This free bond acts as new radical opening 
up another double bond, and thus in a series of reactions a chain is created (figure 
2(b)). Chains can crosslink in the tetrafunctional molecules, thus forming branched 

Figure 1. ( a ]  Monoacrylamide and ( 6 )  bisacry- 
lamide where -R- is an abbreviation for 

0 = k-Y-H; inset: schematic representation. 
I 

Figure 2. ( a )  Initiated monoacrylamide molecule 
and ( b )  chain of three molecules; the central one is 
a bisacrylamide. I is the initiator and * the unsatur- 
ated bond; inset: schematic representation. 
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macromolecules. The gel point is reached when for the first time an infinite 
macromolecule appears forming the gel which has a finite shear modulus, etc. If two 
unsaturated carbon atoms encounter each other they can form a bond, thus annihilating 
their radical character. This is a characteristic of radical activation and would not be 
possible in the case of anionic or cationic activation. We will not take into account 
in our model disproportionation, where annihilating unsaturated molecules form two 
separate polymers, nor processes with poison, which could inactivate the radical, nor 
degradation, that is the possibility that chemical bonds may break up again. We will 
also not allow for the possibility that acrylamide molecules react even without the 
help of radicals. Billmeyer (1962) discusses these effects in detail. 

In our simulation we put the molecules on the sites of a simple cubic lattice. 
Clearly, a lattice is not realistic for a polymer solution; but computer simulations 
(Vicsek and Kertesz 1981, Gawlinski and Redner 1983, Haan and Zwanzig 1977, 
Gawlinski and Stanley 1981) of continuum random percolation without a lattice gave 
no qualitative change compared with random percolation on a lattice. We use the 
lattice as a tool to take into account automatically the excluded volume effects (no 
two molecules at the same place) and to allow for loop formation, two effects neglected 
in simple Flory-Stockmayer theory (Flory 1941, 1953, Stockmayer 1943). We do 
not believe that this lattice approximation changes the universality class of critical 
phenomena in this model. 

Each site of the simple cubic lattice is initially occupied randomly by one of three 
types of molecules: tetrafunctional units with probability c t  , bifunctional units with 
probability cb and zero-functional solvent molecules with probability cS. Obviously, 

C t  +cb +cs = 1. 

Chemical bonds can only be made between nearest neighbours on the lattice. The 
functionality of each molecule or unit gives the maximum number of chemical bonds 
which it can form with its neighbours; thus the zero-functional solvent is chemically 
inert and the bifunctional units alone would only form chains without crosslinks and 
without a transition to a gel (infinite network). Gelation is made possible by the 
presence of tetrafunctional units which allow for chain intersections and for the 
formation of large networks of chemically bonded molecules. In our lattice each site 
has six nearest neighbours; since four is the maximum functionality of any site in our 
model we have taken into account, to some extent, the steric hindrances which may 
prevent all functionalities of a molecule from being used simultaneously. We call the 
bi- and tetrafunctional units ‘polymerisable’ to distinguish them from the inert solvent. 

The growth process is governed by the radicals which we call active centres. In 
our model, only polymerisable units may carry an active centre which is regarded as 
part of that polymerisable unit and does not occupy a separate lattice site. 

Usually the active centres are produced by the dissociation of more complex 
molecules, as in our example of the ammonium persulphate molecule that splits into 
two ammonium sulphate molecules. If this dissociation is relatively slow then new 
active centres may be formed during the gelation process; if it is relatively fast, all 
active centres are produced at the beginning of the reaction. This second ‘fast’ limit 
is adopted in our model. In the special case of no solvent and no mobility of 
condensable units, all active centres in the beginning of the simulation are assumed 
to occur in pairs since they did not have enough time to physically separate after their 
chemical dissociation. Thus initially a fraction cI of the links connecting nearest 
neighbours in our lattice is assumed to be ‘occupied’ randomly; and an occupied bond 
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means that the two units connected by that link each carry an active centre and are 
permanently bound together. Since the number of bonds is three times the number 
of sites in a simple cubic lattice, and since each initiator (initially occupied bond) 
contributes two active centres, the total number of active centres is 6 c I L 3  in a lattice 
with L 3  sites at an initiator concentration cI. When the polymerisable units are mobile 
in a solution (Bansil et af  1982) (c ,  # 0) we take the active centres as highly mobile 
and thus distribute them randomly at the beginning, no longer pairwise, with the only 
restriction that no unit carries more than one radical. (We keep, however, the definition 
of cI as above with the factor 6 . )  

So far we have only explained the initial distribution of the various molecules 
which then undergo a polymerisation process. This gelation process is defined by the 
motion of active centres: each active centre can move from its present site to a 
nearest-neighbour site, and then the bond between its old site and the new site is 
called occupied (permanent chemical bond). Groups of polymerisable units connected 
by occupied bonds are called clusters and correspond to macromolecules. (Unattached 
monomers are not called clusters.) 

The motion of an active centre to its nearest-neighbour site is random except that 
the new site must have at least one free functionality. That means at most three (one) 
of the four (two) possible bonds emanating from the tetrafunctional (bifunctional) 
neighbour are allowed to be occupied before the active centre jumps to that neighbour. 
Solvent molecules never carry an active centre and are never connected by occupied 
bonds. Should the active centre jump to a site carrying another active centre, the two 
radicals annihilate each other and the bond between the two sites becomes occupied. 
Thus the number of occupied bonds increases with time, and these bonds trace the 
motion of active centres, the number of which decreases in time due to annihilation. 
Active centres can also become trapped even if they are not annihilated, if all their 
neighbours are chemically saturated, that is, have all their possible two or four bonds 
occupied. Entrapment can eventually stop the whole growth process. 

No bonds can become occupied in our model except by the above process of initial 
distribution and later motion of active centres. Since the active centres can jump 
rather freely from one polymerisable unit to another, we arrive at chemical bonds 
between different tetrafunctional units, between different bifunctional units and 
between tetra- and bifunctional units. No direct links are possible between the 
functionalities of one unit (which would transform a tetrafunctional into a bifunctional 
unit). Loop formation is not restricted and excluded volume effects are taken into 
account automatically by the lattice structure. 

Since the occupied bonds describe the path of motion of an active centre they are 
spatially correlated, in contrast to random percolation. But since at every moment 
the motion of the active centres is random, and since their initial (pairwise) distribution 
is also random, we have taken into account fluctuations in our model and avoid the 
completely deterministic approach of some other theories (Schulthess et a1 1980, Ziff 
1980, Leyvraz and Tschudi 1981, Ziff et a1 1982, 1983) where kinetic equations 
involving the average concentrations of units and macromolecules determine the 
changes with time. We think that this deterministic averaging approach is valid in 
the limit of extremely high mobility where a molecule can react with equal probability 
with every molecule in the whole system independent of their separation. Our model 
deals mainly with the opposite limit of zero mobility of polymerisable units. We now 
describe how the intermediate and more realistic case of finite mobility can be 
simulated. 
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A finite mobility is allowed in the model with help of the solvent molecules 
(zero-functional units). Each solvent site may exchange place with a neighbour, be 
it another solvent molecule or a polymerisable monomer. (Monomers are units which 
have not yet reacted at all.) The problem is how to treat the mobility of 
macromolecules, that is, what to do if the solvent molecule wants to exchange its 
position with a neighbouring polymerisable unit which is connected by permanent 
chemical bonds to other polymerisable units and thus forms part of a macromolecule 
or cluster. A complete treatment would have to include the motion of the 
macromolecule as a whole (Gould and Holl 1981) as well as conformational changes 
where only parts of the cluster move. Entanglement between different macromolecules 
will hinder these motions and make a computer simulation quite difficult. For simplicity 
we thus allow a unit to move only if it is connected by at most one occupied bond to 
another unit. The bond length is then changed to the new distance. (In the study by 
Bansil et a1 (1982) only unattached monomers were allowed to exchange sites with 
solvent molecules.) We vary the mobility by changing the ratio of the rate of exchange 
attempts for solvent molecules to the rate of jump attempts (reaction rate) for the 
active centres. 

Our model is similar to that of an earlier study of Manneville and de Seze (1981), 
the main differences being that we allow for bonds between nearest neighbours only 
(whereas Manneville and de Seze also take into account jumps of the active centres 
to next-nearest neighbours) and that our initial distribution of initiators has a constraint. 
We also look at different and experimentally more relevant quantities, use larger 
lattices to obtain better statistics and smaller boundary effects, and differ in some 
conclusions from Manneville and de Seze (1981) (see below). Finally, Manneville 
and de Seze had no solvent and no monomer mobility in their computer simulation. 
Thus our model is a continuation, generalisation and improvement of that studied 
by Manneville and de Seze (1981). 

Our work was suggested in part by polyacrylamide experiments (Bansil et a1 1982). 
This model may work even better for divinylbenzene-styrene, methyl methacrylate 
or other experimental examples. The main aim here is not to reproduce one given 
experiment but to investigate deviations from randomness due to the growth process. 

3. Methods 

Our method of investigation is a computer simulation of the model described in § 2. 
This method is a Monte Carlo simulation, since it involves the use of random numbers. 
Our method differs from Monte Carlo simulation of thermal phase transitions in that 
no thermal equilibrium, described by Boltzmann factors, is assumed anywhere: we 
look at a growth model for irreversible gelation, not an equilibrium model for reversible 
gelation. Therefore our simulation has more similarity with Monte Carlo studies of 
random percolation than with Monte Carlo simulation of lattice gases. (See Binder 
(1979) for a collection of review articles on both Monte Carlo methods.) In particular, 
our method is closely connected, though with different results, to the single-cluster 
percolation studies of Leath (1976), Alexandrowicz (1980), Pike and Stanley (1981) 
and Grassberger (1982). 

At the beginning of each simulation we randomly distribute tetrafunctional units 
with probability c t  on a simple cubic lattice of L x L x L sites, with L up to 60. All 
other sites are occupied by bifunctional units with a concentration cb or by solvent 
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units with a concentration c,. The positions of bi- and tetrafunctional units are fixed 
throughout the simulation, with the exception of some runs (to be described in the 
next section) where some mobility is allowed due to the presence of zero-functional 
units (‘solvent molecules’). In the case c t  = 1 all sites are occupied by tetrafunctional 
units but even then the system does not correspond to random percolation. One 
reason is that in random percolation on this simple cubic lattice each site has functional- 
ity six, whereas our sites are only tetrafunctional. The other reason is that we look 
at a growth process whose results differ from those of random percolation, where 
bonds are formed randomly instead of our process of gradual initiation of neighbouring 
bonds. 

In the previous section we explained the meaning of an occupied bond. To simplify 
the computation we assume that initially no unit can have more than one occupied 
bond, in other words, the initiators are not allowed to be nearest neighbours; apart 
from that restriction, the spatial distribution of initiators is taken as random. According 
to Kertisz et a1 (1982), for c t  = 1, the initiators would form an infinite network of 
neighbouring bonds if cI is larger than about 5, if they are allowed to be nearest 
neighbours (restricted valence percolation). For cI much smaller than this percolation 
threshold for tetrafunctional units, most initially occupied bonds are automatically 
isolated from other initially occupied bonds even if our neighbour avoiding restriction 
is not imposed. Thus for cI<< 5 our assumption should not change the results, and 
therefore we only worked with rather small cI, If one wants to study effects from 
larger cI, however, it would be useful, and possibly more realistic, to allow occupied 
bonds to touch each other already at the beginning; the necessary changes in the 
computer program may increase the computation time by about 10%. (In the simula- 
tion following the initial distribution of occupied bonds, our restriction is no longer 
used and occupied bonds may touch.) While c1 is low, the number 3cIL3 of initially 
occupied bonds (or 6c1L3 radicals) is always much larger than unity ensuring that our 
model differs from the growth of a single cluster (Leath 1976, Alexandrowicz 1980). 

The kinetic process following the initial distribution of radicals is defined as follows: 
each initially occupied bond is regarded to connect a pair of free radicals (see figure 
3 ( a ) ) .  At each time unit  of our model, that means at each Monte Carlo step per 
radical, a radical randomly selects one of the six bonds emanating from this radical 

A dl 

U 

Figure 3. Schematic growth process for L = 4, c, = 0.5, c, = 0 and cI  = 0.021. Full circles 
are tetrafunctional units, open circles bifunctional units and stars are radicals. ( a )  Initial 
state; ( 6 )  and ( c i  after 4 and 11 successful attempts to occupy a bond; ( d )  the two radicals 
annihilate and a closed loop is formed. We show one plane only but allow bonds to go 
to planes above and below. Note our periodic boundary conditions for the motion of the 
radicals. 
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lattice site, This newly selected bond leads to another neighbouring lattice site. Now 
one of two possibilities occurs: in the first case this neighbouring lattice site has all 
its two or four bonds occupied, for bi- and tetrafunctional lattice sites, respectively. 
(For example, if the neighbour is bifunctional and sits on top of the original radical 
lattice site, then it may have occupied bonds with its left and right neighbour, whereas 
its four other bonds pointing up, down, back and forward are still empty.) In this 
case no additional bond can be occupied for this neighbour, and the original radical 
stays at its old place without creating any new occupied bond; we simply go over to 
some other radical. In the other case, the number of occupied bonds emanating from 
this neighbour is smaller than the functionality (two or four) of their neighbour. Then 
the bond connecting the original radical and its selected neighbour is regarded as 
occupied (figures 3 ( b )  and ( c ) ) .  If in this case of a successful attempt to create a new 
bond the neighbour happened to be another radical, the two radicals are regarded as 
annihilating each other (figure 3 ( d ) ) ;  otherwise the neighbour is now a radical whereas 
the original radical site is not now a radical. 

In one Monte Carlo attempt a radical site was selected randomly. If all its six 
neighbours are already saturated, that is, have all their functionalities occupied, then 
the radical is called trapped. If all radicals in the system are trapped, then no changes 
at all will occur even if we make an infinite number of attempts. We therefore stopped 
the calculation if a predefined number of attempts to find a new bond to be occupied 
were unsuccessful; then a message was printed out informing us about this entrapment. 
Otherwise we stopped the calculation after a time when we were sure that gelation 
(i.e. formation of an infinite network) had already occurred. 

Initially, besides isolated monomers we have only clusters of size two, that is, 
macromolecules containing two lattice sites connected by the initially occupied bonds 
(no neighbouring bonds were allowed). During the growth process described above 
the clusters can grow by the addition of one previously isolated site, or by coalescence 
of two clusters. Thus during the simulation it is rather easy to keep track of the 
number n, of clusters (per lattice site) containing s monomers each. s is proportional 
to the molecular weight if the bifunctional and tetrafunctional units have the same 
weight; otherwise s should be called the degree of polymerisation for that particular 
macromolecule. For light scattering studies it is of particular interest to know the 
weight-average degree of polymerisation defined as Xs s2n, /X,  sn, where the sum runs 
over all finite cluster sizes s (including s = 1 for isolated monomers). In Monte Carlo 
simulations of finite systems, the denominator in this definition is known to present 
some difficulties since it is strongly influenced by the boundaries of the system and 
deviates appreciably from the value of unity it should have at the gel point (and in 
the sol) (Hoshen et a1 1979). Therefore we looked at the second moment of the 
cluster size distribution, that is, at the numerator in the definition of the average 
molecular weight: 

This second moment is represented by the symbol normally used for the susceptibility 
in ferromagnets, for in the analogy between zcllifinn and ferromagnet-to-paramagnet 
transitions this second moment corresponds i3 the zero-field susceptibility (Stauff er 
et a1 1982). For infinitely large systems at the gel point, the difference between x 
and the weight-average degree of polymerisation becomes negligible. We also deter- 
mined G, the size of the largest cluster divided by the total number of lattice sites; 
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this G is the gel fraction in our model and corresponds to the spontaneous magnetisa- 
tion in the magnetic analogy. 

Originally we stored in the computer information on which bonds are occupied 
and which are empty; however, execution time was reduced by nearly one order of 
magnitude if we restricted ourselves to keep in the memory only the number of 
occupied bonds emanating from each site. With this method one necessarily allows 
for up to three bonds to be occupied between neighbouring sites if both sites were 
initially tetrafunctional radicals. One allows up to two bonds to be occupied between 
neighbouring sites if the sites were initially radicals and one or both bifunctional or 
if the sites are both tetrafunctional but the bond was not initially occupied. 

On the IBM computer 370/158 the random numbers were determined by a mixture 
of two random-number generators (Ambegaokar e? a1 1973): with one we filled a 
table of a hundred random numbers while with the other we selected which of these 
random numbers should be used now and which should be replaced by a fresh random 
number. We used one random number to determine several random variables. On 
the CDC Cyber 170/730 computer, we used the better random number generator 
RANF available there. 

The whole procedure of distributing bi- and tetrafunctional units, initialising and 
growing was performed N times and the statistical average was taken. N was chosen 
between 50 and 500 depending on the fluctuations observed. 

In summary, we simulated a growth process where many free radicals in our lattice 
wander around rather randomly and leave occupied bonds in their path which connect 
chemically the neighbouring bi- and tetrafunctional units. For an initial concentration 
CI = 0.003 of occupied bonds, an attempt of a radical to move took about 0.3 ms on 
the IBM at the University of Georgia. The program was about 30% faster on the CDC. 

4. Results 

Since the kinetic model presented in the previous sections is expected to describe a 
time-dependent behaviour, we wish to clarify what the time is in our model. Let us 
set t = 0 for the time when the growth begins. Then we define our time t to be equal 
to the number of attempts (successful and unsuccessful) to grow a bond on the lattice, 
normalised by the initial number of active centres no = 6cIL3. Naturally this definition 
is arbitrary but we believe it coincides more or less with reality. 

To establish the relationship to percolation we will look at quantities depending 
on p instead of t, where p is the number of occupied bonds at a certain time divided 
by the total number of bonds in the lattice (3L3) .  In figure 4 we show the dependence 
of p / n o  against f / 3 L 3  and see that the behaviour is smooth also at the gel point pc 
for CI  = 0.003, cs = 0 and two values of ct. Certainly higher-order non-analyticities 
cannot be ruled out by a plot of this kind but they are very improbable. 

In experiments the measurable quantity is not p but the fraction U, which is defined 
as the number of units that have at least one occupied bond per total number of 
polymerisable units. In figure 5 ( a )  we plot u against time. As expected we see a 
monotonic increase of U and note a smooth behaviour of U at the gel point p c .  
Experimentally U shows a saturation at large times at a value uo that may be smaller 
than 1. In our case we also see a saturation, but at some time tt all our active centres 
are trapped and the growth stops. This early trapping is certainly an artifact of the 
lack of mobility and takes place at a U of about 0.6. Fortunately the gelation usually 
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Figure 4. p divided by the initial number of active centres no against the time t divided 
by the number of bonds for cI = 0.003, c, = 0 and L = 60. The open circles stand for c t  = 1 
and the open triangles for c, = 0.1. The gel point is marked by pc. 

occurs well before the trapping so that trapping does not perturb the investigation of 
the critical properties of the gel point. 

Another quantity of interest is the number of active centres as a function of time 
(or of p ) .  Obviously the annihilation process will make this number decrease as shown 
in figure 5 ( 6 ) .  The decrease is monotonic and smooth at the gel point but stops again 
at the trapping point. no is the initial number of active centres and n t  the number of 
trapped active centres. ( n o - n t ) / n t ,  the ratio of the annihilated to trapped active 
centres, is usually between one and three at the trapping point. 

0 61 

ib l  

t 

Figure 5. ( a )  c against t for CI = 0.003, c, = 0.1, c, = 0 and L = 42. ( b )  Number of active 
centres against time for cI  = 0.003, c,  = 0.1, c, = 0 and L = 42. The gel point is marked 
by Pc, 
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At this place it should be mentioned that in order to avoid prohibitively large 
computer times and at the same time not to bias the ‘time’ interpretation, we choose 
to use a more lenient definition of trapping; whenever the number of unsuccessful 
growth attempts is two or more times larger than the number of successful attempts, 
we will stop the growth and call the system trapped. A more extensive discussion on 
trapping is given by B a n d  et a1 (1982). 

The quantities discussed above showed no peculiarities at the gel point and are 
therefore not suitable for describing the critical behaviour. The order parameter of 
gelation is the gel fraction G1 which is the number of sites that are in the largest 
cluster divided by the number of sites that are in any cluster. In figure 6 we show G1 
against p for different lattice sizes at cI = 0.003, c t  = 1 and cs = 0. Increasing the lattice 
size L reduces G1 below the gel point p c  and it should go to zero for L + CO. Particularly 
the inflection point of G1(L) should behave as G’;”fl(L)-L-4/Y (Fisher 1971) but 
unfortunately it is very difficult to determine the inflection point accurately. The 
broken curve shows the expected behaviour for infinite lattice sizes but clearly this is 
not a very accurate way to determine p c .  Above p c  the gel fraction is finite and tends 
to unity if we increase p .  Thus, there is clearly only one infinite cluster far above p c .  

1 Or 

P 

Figure 6. Gel fraction G I  against p for cI  = 0.003, c, = 1, c, = 0 and different lattice sizes: 
A, 153; 3, 203; A, 303 ;  0, 433; 0. 603. The broken curve is an extrapolation to the 
infinite lattice. 

We expect G1 to behave near pc as 

G l a ( P - P C ) P  forp+p,’. (2) 

GI(L,  p )  = L-””Y[(p -pc)L””] (3) 
where Y is the scaling function. In the asymptotic limit L + CO and p + pc we regain 
equation (2). In figure 7 we thus plot GILp’” against L””(p - p c l / p c  adjusting p / v  and 
l / v  so that the points of different lattice sizes lie on the same curve. pc was chosen 
to be 0.0835 for CI = 0.003, ct = 0.4 and c, = 0. (Later we explain how this p c  was 
determined.) The fitting is done best by Y = 0.82 f 0.10 and p / v  = 0.45 f 0.05, thus 
yielding p = 0.37k0.09. The slope of the curve for p > p c  should be p as (2) should 
hold for infinite lattice size. Figure 7 gives a slope p = 0.4 consistent with our previous 
estimate. This p is also consistent with the p of three-dimensional random percolation. 
For p < p c  different lattice sizes also scale according to (3); the asymptotic slope 
indicates that G1 decreases faster than L-””. 

In order to determine p we use finite size scaling (Fisher 1971, Landau 1976): 
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Figure 7. Finite size scaling of G1 for c1 = 0.003, ct  = 0.4, c, = 0 with p i u  = 0.45 and 
1 / v  = 1.22. The straight line for p r p ,  has a slope of 0.4. Lattice size: C, 203;  A, 303; 
M, 403; 0, 603.  

Manneville and de Seze (1981) had raised the possibility of more than one infinite 
cluster near p c .  Although for static percolation a finite number of infinite clusters 
greater than one cannot exist (Newman and Schulman 1981), a kinetic approach like 
ours cannot exclude this possibility from the beginning. Thus we plot the fraction G2 
of the second largest cluster, in an analogous definition to that of G1, against p in 
figure 8 for c I  = 0.003, ct  = 0.9 and cs = 0.1. We clearly see that for larger lattice sizes 
the effect of the second largest cluster becomes less important. A finite size scaling 
of the maximum of the curves (Margolina et a1 1982) 

G F  ( L )  - L-0.5 

supports this quantitatively yielding an exponent of p/v = 0.5 f 0.1 which agrees in 
its error bars with the values we got from GI and the value of random percolation 
(p/v 6 0.5). The region in p > p c  for which G2 is large shrinks to zero for L +CO, in 
contrast to G1. Thus we have clear evidence that the gelation model has only one 
infinite cluster. 

More pronounced effects at the gel points are shown by the average molecular 
weight x defined in (1) as seen in figure 9, where the data for cI = 0.003, ct = 0.4 and 
cs = 0 are shown for different lattice sizes. The gel point can be localised at p c  = 
0.085 k 0.002. The singularity at pc  is expected to behave as 

x = C+(p -pc)Y forp+p:  

x = a p c  forp+p:. 
(4) 

The ratio 

R = C-/C+ ( 5 )  
will play a major role in the forthcoming discussion. The behaviour (4) of x can be 
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Figure 8. Fraction of the second largest cluster Gz against p for cI  = 0.003, c, = 0.9 and 
c ,=  0.1 for different lattice sizes: C, 203: A,  303; 3, 403; 0, 603. 

Figure 9. ALerage molecular weight ,y against p for cI  = 0.003, c t  = 0.4, c, = 0 and different 
lattice sizes: 1, 20'; A, 303;  3, 403: 0 , 6 0 ' .  The statistical error bars are shown whenever 
they are larger than the symbols. 

verified in the log-log plot of figure 10. The two curves have a linear region given 
by (4) which breaks down near pc because of the finite lattice size, as can be seen by 
the guides to the eye (broken curves) that are plotted through the points below p c .  
As we expect the exponent y to be equal above and below pc.  the gel point can now 
be localised much more accurately by using the criterion that the two straight lines 
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Figure 10. Average molecular weight x plotted double logarithmically against l p  - p , I / p ,  
for pc = 0.0835. The parameters are cI = 0.003, c, = 0.4 and c, = 0. The finite size effects 
are indicated by broken curves. Lattice size: S, 203; A, 303; 3, 403; 0, 603. 

in figure 10 should be parallel. This gives us the value p c  = 0.0835 * 0.0005 which is 
also the value for pc  used in figures 7 and 10. The ratio R given by the distance of 
parallel lines in figure 10 is roughly estimated to be 2.8kl .O and the slope is 
y = 1.98*0.10. 

The extrapolation to the straight line of the infinite lattice in figure 10 is of course 
not a very reliable method as it is done by eye; therefore we made a careful finite 
size analysis (Fisher 1971, Landau 1976). Using the analogy of ,y to the magnetic 
susceptibility at Curie points finite size scaling asserts 

where 9 is a scaling function. The asymptotic limit L -$ 00 and p + p c  should give 
equation (4). So we plotted in figure 11 XL-”“ against L’”’lp - p c l / p c  for y. v and pc  
adjusted in that way that both curves have straight lines in an intermediate region of 
slope -y.  The latter property must hold because in order to retain (4) from (6) 
9 ( x ) 0 c l x l - ~  for IxJ+co. For the fitting we used a computer program that gave us 
p c  = 0.0835 i0.0004, y = 2.01kO.landv = 1.0*0.2. Theerrorsarisefromthestatistical 
errors in ,y and it is seen that the fitting is not very sensitive to the exponents y and 
v. The fact that in figure 11 the points for the different lattice sizes all lie on a single 
curve indicates that equation (6 )  is correct. The ratio R is determined from the finite 
size plot to be R = 2.5 *0.8 and so we see that our first analysis without the finite 
size scaling already gave the correct result; the effect of the finite size does not 
substantially distort our results. 

The values y and v we obtain cannot be distinguished reliably from the random 
percolation exponents y = 1.8 and v = 0.9, but the ratio R, which because of E. 

expansion studies (Aharony 1980) is also expected to be universal, is clearly smaller 
than the percolation value of about 10. (In two dimensions, complicated percolation 
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Figure 11. Finite size scaling of ,y for c ,  = 0.003, ct  = 0.4, c, = 0 with p c  = 0.0835, y = 2 
and v = 1. Lattice size: 0, 203; A, 303; I, 403; 0, 603. The straight lines have a slope 
of -2; R =2.6&0.8. 

models sometimes show an R different from random lattice percolation; it is not 
entirely clear if these differences are real or an artifact of insufficient data (Gawlinski 
and Stanley 1981, Nakanishi, private communication).) For the sake of comparison 
the random percolation values have been evaluated in the same way as just described 
and presented by Herrmann et a1 (1982). We can summarise at this stage that for 
cI = 0.003, ct = 0.4 and c, = 0 we found exponents roughly in agreement with random 
percolation and in disagreement with the classical Flory-Stockmayer theory and a 
ratio R which clearly differs from both the percolation value of ten and the Flory- 
Stockmayer value of unity. This means that our model is in neither one of the two 
universality classes. 

The above rationale was already presented in a compact version by Herrmann et 
a1 (1982) for the values cI  = 0.003, cs = 0 and ct  = 0.1 and c t  = 1. Taking together the 
values for ct  = 1, 0.4 and 0.1 we can see that variation of ct  does not change the 
universality class but that the gel point is shifted to larger p c  if we decrease ct.  In 
figure 12 we show the phase diagram for cs = 0. For small concentration of tetrafunc- 
tional units long chains will be grown with sparse crosslinking and for c t  + 0 we expect 
to have a crossover to self-avoiding walks. Our simulations at small ct  are limited by 
entrapment which for ct  = 0.05 already occurs near the gel point. Therefore we cannot 
reliably extrapolate the gelation point to c t  + 0, but we assume that it will go to p c  = f 
which is the maximum number of bonds that can be occupied if all units are bifunctional. 
It is nevertheless worthwhile to study more carefully the region of small c t  as this is 
an interesting case from the experimental point of view. 

Another parameter that can be varied is cI, the concentration of initiators. cI 
determines the number of clusters and therefore essentially the size of the clusters at 
a fixed p .  For ct  = 1 and c, = 0, we show in figure 13 the log-log plot of x against 
l p  -pc l /pc  for CI = 0.0003 and cI = 0.03. The smaller CI, the more pronounced are 
finite size effects. The exponent y increases only slightly for small cI, still being within 
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Figure 12. Phase diagram for varying ratio of number of tetrafunctional units to total 
number of polymerisable units for the case of no solvent and c, = 0.003. 
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Figure 13. Susceptibility against I p - p , l / p ,  for c t =  1 and c,=O: ( a )  c1=0.0003 and 
p c  = 0.032; ( b )  cI  = 0.03 and pc = 0.166. The broken curves are guides to the eye. Lattice 
sizes: A,  303; 0, 423; ., 40’; 0 603. 

the error bars of percolation ( y  = 2.3 f 0.4 for cI = 0.0003). On the other hand, the 
ratio R clearly shows a systematic change to smaller values for decreasing cI. 

Although the error bars of R are so big that the value for cI = 0.03 (R = 4.2 k 1.2) 
and for cI = 0.0003 (R = 1.7*0.6) each overlap with the R for cI  = 0.003, it does not 
seem likely that R has the same value for all cI. For cI larger than 0.1 we find a ratio 
compatible with random percolation; however, as mentioned in the previous section, 
the model is only realistic for cI<< 0.33. It is possible that in the limit c I + 0  the ratio 
goes to unity, thus agreeing with measurements of Schmidt and Burchard (1981). We 
point out that this does nor mean that the case cI + 0 is in the universality class of the 
classical Flory-Stockmayer theory as the exponent y clearly does not go to unity. On 
the contrary, although y tends to increase slightly, it still agrees, within the error bars, 
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with the random percolation value for cI + 0. It is more plausible that CI + 0 represents 
a new universality class that might be similar to backbone animals (Coniglio, private 
communication) and that the continuous change in R from 8 at c1=0.1 to 1.7 at 
cI = 0.0003 is a crossover between this universality class and percolation. For lattice 
sizes, which we can study, it is possible that the asymptotic critical behaviour is 
observed in the region dominated by finite size rounding; however, the finite size 
scaling plots should in the case of crossover show two different exponents or at least 
different amplitudes. Although it is possible that this occurs in our finite size plot 
quite close to pc, we do not have sufficient accuracy in the data to identify systematic 
differences clearly. Since it is possible that 10 to 100 times more data are needed to 
settle this question, we defer this problem to a later study. At this point we should 
remember that the concept of universality has not yet been worked out for kinetic 
processes, and it might also well be that the kinetics makes R a non-universal quantity. 
Further investigation is necessary in order to clarify this interesting question. 

In the light of the above, it is not surprising that p c  changes with cI  drastically if 
c I+  0. From figure 14 we see that presumably pc + 0 for c I+  0. The lowering of cI 
also produces an earlier trapping because of the smaller number of active centres 
available, but this is well compensated by the earlier onset of gelation so that the 
limit of small cI is easily accessible for our simulations. 

0 0 05 010 
Cl 

Figure 14. Phase diagram for varying concentration of initiator cI  for c c  = 1 and c, = 0 

Up to this point we had set the concentration of solvent c, to be zero. Since the 
solvent essentially decreases the number of polymerisable units to which an active 
centre could grow, the trapping is very much enhanced by an increase of c,. Thus, 
for c, = 0.6 trapping occurs already at p = 0.033 for cI = 0.003 and c t  = 0.4, that is, 
much earlier than gelation. We must therefore restrict ourselves to small c, and will 
restrict ourselves now only to cs = 0.1. More extensive work for higher concentrations 
is also under way. For c t  = 0.9 and cI = 0.003 we see within our error bars no difference 
in the gel point, the exponents or the ratio R to the case without solvent. For ct = 0.1 
and cI=0.003 the gel point is 30"/0 higher than in the dense case, c s = O ,  and 
unfortunately the critical quantities cannot be determined because of the early trap- 
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ping. A detailed investigation of the effect of a solvent without mobility is pursued 
by D Matthews-Morgan, D P Landau and H J Herrmann (1983 in preparation). 

Of course the experimentally interesting case has larger solvent concentrations 
(0.5 and more) and therefore the model must be modified so that the early trapping 
is avoided. This can be done by the inclusion of mobility. In a very rough approxima- 
tion we include mobility by going once through all the solvent units in the lattice 
every 280 growth steps and interchanging the solvent unit with an adjacent (nearest 
neighbour) polymerisable unit with less than two occupied bonds if any such unit 
exists. With this mobility the trapping time becomes roughly twice as large, making 
it possible to see the gel point beyond cs = 0.6 for c t  = 0.4. Unfortunately the mobility 
just described needs about 10 times more computer time than the simulation without 
mobility, making it impossible to study critical phenomena accurately with reliable 
precision. Nonetheless the simulations of small lattice sizes already show that the 
mobility reduces the gel point (about 5 %  for cs = 0.1, c t  = 0.9, cI = 0.003). The concept 
of the mobility is developed in more detail by Bansil er a1 (1982), where extensive 
data are also presented. 

5. Discussion 

Our results have shown that quantities of experimental interest can be calculated with 
this Monte Carlo simulation of irreversible gelation, both near the gel point and far 
away from it. The gel point and its critical exponents can be determined with 
reasonable accuracy. 

Modifications and generalisations of the model are possible to obtain the same 
information for other situations of experimental interest. A detailed comparison with 
experiment is not undertaken for the present results since they neglect solvent effects; 
we refer instead to the discussion by Bansil et a1 (1982) where a mobile solvent is 
included in the model. 

For the particular problem of critical phenomena, the main result of this work is 
the discovery that the critical amplitude ratio for the ‘susceptibilities’ (i.e. the ratio 
of the weight-average degree of polymerisation slightly below and above the gel point, 
at equal distance from it) differs strongly from random percolation theories. Moreover 
it seems to vary with the concentration of initiators. We leave it to future research 
to investigate the limit of initiator concentration going to zero where new effects seem 
to happen. For the present work, the critical exponent of the average molecular 
weight can be regarded as constant and as roughly equal to the random percolation 
value, within the errors of our simulation. 

What does this difference in the amplitude ratio mean? Renormalisation group 
(Aharony 1980) theory clearly says that both the critical exponent and the amplitude 
ratio should be universal for random percolation. Thus our data indicate that our 
model does not fall into the universality class of random percolation. No renormalisa- 
tion group theory has yet been developed for the kinetic percolation model discussed 
here, and thus we do not know if our results violate some as yet undeveloped kinetic 
universality principle. 

How do we explain this deviation from the universality class of random percolation? 
One might first think that the mixture of bifunctional and tetrafunctional units is 
responsible. However, field-theoretical results (Lubensky and Isaacson 1978) as well 
as Monte Carlo simulations (KertCsz er a1 1982) indicate that for random percolation 
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such restrictions in the allowed valences are not important for the universality class. 
More likely, the kinetic aspect of our model changes the universality class. In the 
coagulation model it is already known that changes in the size dependence of the 
coagulation coefficients give changes in the critical exponents (Leyvraz and Tschudi 
1981, 1982, Ziff 1980, Ziff et a1 1982, 1983). For models of cluster growth different 
radius exponents were also observed in different kinetic models (Stauffer 1978, Witten 
and Sander 1981, Rikvold 1982). While these models do not seem relevant for 
gelation with many initiators and finite mobility, their main result may as well be 
applicable to our model: details in the kinetic assumptions change the critical 
behaviour. 

To what extent is our model different from other kinetic percolation models? The 
growth methods of Leath, Alexandrowicz, Pike and Stanley, and Grassberger seem 
to give the same end result as static percolation, in contrast to our results. A crucial 
difference here is that in these other growth models, a site which was once investigated 
and rejected in the Monte Carlo simulation, that is, not incorporated into the cluster, 
remains outside the cluster forever. (This memory effect was described as ‘immunity’ 
by Grassberger.) In contrast, in our model each polymerisable unit and each bond 
emanating from it may have many chances during the simulation to become part of 
a macromolecule. Also, none of these models employs the active centres which make 
bonds possible in our model; the growth tips of Alexandrowicz are created automati- 
cally as part of the cluster growth process and increase with time whereas our active 
centres are put into the system separately and can only annihilate later. Finally, we 
look in the present work at the simultaneous growth of many clusters (since the 
number of radicals is larger than unity) whereas these other models look at one cluster 
only. Thus it is not surprising that our results are different and give a different 
universality class. 

Our motion of active centres has some similarity with the ‘ant in the labyrinth’ 
problem (see Mitescu and Roussenq 1983 for a review) where a point moves randomly 
from one occupied site to a neighbouring occupied site in random percolation. This 
diffusion process has also given different critical exponents if seemingly minor changes 
were made in the kinetic assumption, further bolstering our assertion that the kinetic 
aspect is responsible for deviations in the universality class. A crucial difference to 
our model, however, is that we do not allow an occupied bond to be broken again; 
thus, an active centre can visit a tetrafunctional unit at most twice since then it has 
formed four permanent bonds. The ant, on the other hand, can visit the same place 
as often as it likes. In this sense, our memory effects are in between those of Leath’s 
cluster growth method and its variants on the one side (sites once defined as empty 
remain always empty) and the ant problem on the other side (no memory at all): we 
do not allow a bond once occupied to become unbound again, but it may try again 
and again to become occupied. 

The model we have investigated here can also be studied in two dimensions. Work 
in this direction is carried out by A Rushton (Rushton et a1 1983). 
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